skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yee, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the main results from a long-term reverberation mapping campaign carried out for the Seoul National University AGN Monitoring Project (SAMP). High-quality data were obtained during 2015–2021 for 32 luminous active galactic nuclei (AGNs; i.e., continuum luminosity in the range of 1044–46erg s−1) at a regular cadence, of 20–30 days for spectroscopy and 3–5 days for photometry. We obtain time lag measurements between the variability in the Hβemission and the continuum for 32 AGNs; 25 of those have the best lag measurements based on our quality assessment, examining correlation strength and the posterior lag distribution. Our study significantly increases the current sample of reverberation-mapped AGNs, particularly at the moderate-to-high-luminosity end. Combining our results with literature measurements, we derive an Hβbroadline region size–luminosity relation with a shallower slope than reported in the literature. For a given luminosity, most of our measured lags are shorter than the expectations, implying that single-epoch black hole mass estimators based on previous calibrations could suffer large systematic uncertainties. 
    more » « less